102 research outputs found

    An enhanced RNA alignment benchmark for sequence alignment programs

    Get PDF
    BACKGROUND: The performance of alignment programs is traditionally tested on sets of protein sequences, of which a reference alignment is known. Conclusions drawn from such protein benchmarks do not necessarily hold for the RNA alignment problem, as was demonstrated in the first RNA alignment benchmark published so far. For example, the twilight zone – the similarity range where alignment quality drops drastically – starts at 60 % for RNAs in comparison to 20 % for proteins. In this study we enhance the previous benchmark. RESULTS: The RNA sequence sets in the benchmark database are taken from an increased number of RNA families to avoid unintended impact by using only a few families. The size of sets varies from 2 to 15 sequences to assess the influence of the number of sequences on program performance. Alignment quality is scored by two measures: one takes into account only nucleotide matches, the other measures structural conservation. The performance order of parameters – like nucleotide substitution matrices and gap-costs – as well as of programs is rated by rank tests. CONCLUSION: Most sequence alignment programs perform equally well on RNA sequence sets with high sequence identity, that is with an average pairwise sequence identity (APSI) above 75 %. Parameters for gap-open and gap-extension have a large influence on alignment quality lower than APSI ≤ 75 %; optimal parameter combinations are shown for several programs. The use of different 4 × 4 substitution matrices improved program performance only in some cases. The performance of iterative programs drastically increases with increasing sequence numbers and/or decreasing sequence identity, which makes them clearly superior to programs using a purely non-iterative, progressive approach. The best sequence alignment programs produce alignments of high quality down to APSI > 55 %; at lower APSI the use of sequence+structure alignment programs is recommended

    ConStruct: Improved construction of RNA consensus structures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aligning homologous non-coding RNAs (ncRNAs) correctly in terms of sequence and structure is an unresolved problem, due to both mathematical complexity and imperfect scoring functions. High quality alignments, however, are a prerequisite for most consensus structure prediction approaches, homology searches, and tools for phylogeny inference. Automatically created ncRNA alignments often need manual corrections, yet this manual refinement is tedious and error-prone.</p> <p>Results</p> <p>We present an extended version of CONSTRUCT, a semi-automatic, graphical tool suitable for creating RNA alignments correct in terms of both consensus sequence and consensus structure. To this purpose CONSTRUCT combines sequence alignment, thermodynamic data and various measures of covariation.</p> <p>One important feature is that the user is guided during the alignment correction step by a consensus dotplot, which displays all thermodynamically optimal base pairs and the corresponding covariation. Once the initial alignment is corrected, optimal and suboptimal secondary structures as well as tertiary interaction can be predicted. We demonstrate CONSTRUCT's ability to guide the user in correcting an initial alignment, and show an example for optimal secondary consensus structure prediction on very hard to align SECIS elements. Moreover we use CONSTRUCT to predict tertiary interactions from sequences of the internal ribosome entry site of CrP-like viruses. In addition we show that alignments specifically designed for benchmarking can be easily be optimized using CONSTRUCT, although they share very little sequence identity.</p> <p>Conclusion</p> <p>CONSTRUCT's graphical interface allows for an easy alignment correction based on and guided by predicted and known structural constraints. It combines several algorithms for prediction of secondary consensus structure and even tertiary interactions. The CONSTRUCT package can be downloaded from the URL listed in the Availability and requirements section of this article.</p

    A benchmark of multiple sequence alignment programs upon structural RNAs

    Get PDF
    To date, few attempts have been made to benchmark the alignment algorithms upon nucleic acid sequences. Frequently, sophisticated PAM or BLOSUM like models are used to align proteins, yet equivalents are not considered for nucleic acids; instead, rather ad hoc models are generally favoured. Here, we systematically test the performance of existing alignment algorithms on structural RNAs. This work was aimed at achieving the following goals: (i) to determine conditions where it is appropriate to apply common sequence alignment methods to the structural RNA alignment problem. This indicates where and when researchers should consider augmenting the alignment process with auxiliary information, such as secondary structure and (ii) to determine which sequence alignment algorithms perform well under the broadest range of conditions. We find that sequence alignment alone, using the current algorithms, is generally inappropriate <50–60% sequence identity. Second, we note that the probabilistic method ProAlign and the aging Clustal algorithms generally outperform other sequence-based algorithms, under the broadest range of applications

    R-Coffee: a method for multiple alignment of non-coding RNA

    Get PDF
    R-Coffee is a multiple RNA alignment package, derived from T-Coffee, designed to align RNA sequences while exploiting secondary structure information. R-Coffee uses an alignment-scoring scheme that incorporates secondary structure information within the alignment. It works particularly well as an alignment improver and can be combined with any existing sequence alignment method. In this work, we used R-Coffee to compute multiple sequence alignments combining the pairwise output of sequence aligners and structural aligners. We show that R-Coffee can improve the accuracy of all the sequence aligners. We also show that the consistency-based component of T-Coffee can improve the accuracy of several structural aligners. R-Coffee was tested on 388 BRAliBase reference datasets and on 11 longer Cmfinder datasets. Altogether our results suggest that the best protocol for aligning short sequences (less than 200 nt) is the combination of R-Coffee with the RNA pairwise structural aligner Consan. We also show that the simultaneous combination of the four best sequence alignment programs with R-Coffee produces alignments almost as accurate as those obtained with R-Coffee/Consan. Finally, we show that R-Coffee can also be used to align longer datasets beyond the usual scope of structural aligners. R-Coffee is freely available for download, along with documentation, from the T-Coffee web site (www.tcoffee.org)

    R-Coffee: a web server for accurately aligning noncoding RNA sequences

    Get PDF
    The R-Coffee web server produces highly accurate multiple alignments of noncoding RNA (ncRNA) sequences, taking into account predicted secondary structures. R-Coffee uses a novel algorithm recently incorporated in the T-Coffee package. R-Coffee works along the same lines as T-Coffee: it uses pairwise or multiple sequence alignment (MSA) methods to compute a primary library of input alignments. The program then computes an MSA highly consistent with both the alignments contained in the library and the secondary structures associated with the sequences. The secondary structures are predicted using RNAplfold. The server provides two modes. The slow/accurate mode is restricted to small datasets (less than 5 sequences less than 150 nucleotides) and combines R-Coffee with Consan, a very accurate pairwise RNA alignment method. For larger datasets a fast method can be used (RM-Coffee mode), that uses R-Coffee to combine the output of the three packages which combines the outputs from programs found to perform best on RNA (MUSCLE, MAFFT and ProbConsRNA). Our BRAliBase benchmarks indicate that the R-Coffee/Consan combination is one of the best ncRNA alignment methods for short sequences, while the RM-Coffee gives comparable results on longer sequences. The R-Coffee web server is available at http://www.tcoffee.or

    Species Identification and Profiling of Complex Microbial Communities Using Shotgun Illumina Sequencing of 16S rRNA Amplicon Sequences

    Get PDF
    The high throughput and cost-effectiveness afforded by short-read sequencing technologies, in principle, enable researchers to perform 16S rRNA profiling of complex microbial communities at unprecedented depth and resolution. Existing Illumina sequencing protocols are, however, limited by the fraction of the 16S rRNA gene that is interrogated and therefore limit the resolution and quality of the profiling. To address this, we present the design of a novel protocol for shotgun Illumina sequencing of the bacterial 16S rRNA gene, optimized to capture more than 90% of sequences in the Greengenes database and with nearly twice the resolution of existing protocols. Using several in silico and experimental datasets, we demonstrate that despite the presence of multiple variable and conserved regions, the resulting shotgun sequences can be used to accurately quantify the diversity of complex microbial communities. The reconstruction of a significant fraction of the 16S rRNA gene also enabled high precision (>90%) in species-level identification thereby opening up potential application of this approach for clinical microbial characterization.Comment: 17 pages, 2 tables, 2 figures, supplementary materia

    Sequence embedding for fast construction of guide trees for multiple sequence alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most widely used multiple sequence alignment methods require sequences to be clustered as an initial step. Most sequence clustering methods require a full distance matrix to be computed between all pairs of sequences. This requires memory and time proportional to <it>N</it><sup>2 </sup>for <it>N </it>sequences. When <it>N </it>grows larger than 10,000 or so, this becomes increasingly prohibitive and can form a significant barrier to carrying out very large multiple alignments.</p> <p>Results</p> <p>In this paper, we have tested variations on a class of embedding methods that have been designed for clustering large numbers of complex objects where the individual distance calculations are expensive. These methods involve embedding the sequences in a space where the similarities within a set of sequences can be closely approximated without having to compute all pair-wise distances.</p> <p>Conclusions</p> <p>We show how this approach greatly reduces computation time and memory requirements for clustering large numbers of sequences and demonstrate the quality of the clusterings by benchmarking them as guide trees for multiple alignment. Source code is available for download from <url>http://www.clustal.org/mbed.tgz</url>.</p

    Skin Doctor: Machine learning models for skin sensitization prediction that provide estimates and indicators of prediction reliability

    Get PDF
    The ability to predict the skin sensitization potential of small organic molecules is of high importance to the development and safe application of cosmetics, drugs and pesticides. One of the most widely accepted methods for predicting this hazard is the local lymph node assay (LLNA). The goal of this work was to develop in silico models for the prediction of the skin sensitization potential of small molecules that go beyond the state of the art, with larger LLNA data sets and, most importantly, a robust and intuitive definition of the applicability domain, paired with additional indicators of the reliability of predictions. We explored a large variety of molecular descriptors and fingerprints in combination with random forest and support vector machine classifiers. The most suitable models were tested on holdout data, on which they yielded competitive performance (Matthews correlation coefficients up to 0.52; accuracies up to 0.76; areas under the receiver operating characteristic curves up to 0.83). The most favorable models are available via a public web service that, in addition to predictions, provides assessments of the applicability domain and indicators of the reliability of the individual predictions. View Full-Text Keywords: skin sensitization potential; prediction; in silico models; machine learning; local lymph node assay (LLNA); cosmetics; drugs; pesticides; chemical space; applicability domainpublishedVersio

    BlastR—fast and accurate database searches for non-coding RNAs

    Get PDF
    We present and validate BlastR, a method for efficiently and accurately searching non-coding RNAs. Our approach relies on the comparison of di-nucleotides using BlosumR, a new log-odd substitution matrix. In order to use BlosumR for comparison, we recoded RNA sequences into protein-like sequences. We then showed that BlosumR can be used along with the BlastP algorithm in order to search non-coding RNA sequences. Using Rfam as a gold standard, we benchmarked this approach and show BlastR to be more sensitive than BlastN. We also show that BlastR is both faster and more sensitive than BlastP used with a single nucleotide log-odd substitution matrix. BlastR, when used in combination with WU-BlastP, is about 5% more accurate than WU-BlastN and about 50 times slower. The approach shown here is equally effective when combined with the NCBI-Blast package. The software is an open source freeware available from www.tcoffee.org/blastr.htm
    corecore